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A simplified model to predictP-glycoprotein interacting
drugs from 3D molecular interaction field
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Abstract

A new two components partial least squares discriminant analysis (PLS) model for the prediction ofP-glycoprotein-associated ATPase activity
of drugs by using VolSurf compute theoretical molecular descriptors derived from 3D molecular interaction field was reported in the present study.
By using 27 diverse drugs from literature, two models were constructed (R2 = 0.9003, 0.8150;Q2 = 0.7165, 0.7630) in this paper, which were similar
to models that utilized MolSurf parametrization (R2 = 0.7760, 0.7180;Q2 = 0.7420, 0.6950) by using 22 drugs reported in the same literature. The
results investigated VolSurf software was superior to MolSurf in its simplicity. Properties associated with the volume, polarizability, and hydrogen
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ond could have important impact on theP-glycoprotein-associated ATPase activity.
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. Introduction

P-glycoprotein (P-gp), a 170 Kda glycoprotein, is a mem-
er of a highly conserved superfamily of ATP-binding cassette
ABC) transport protein, and shares extensive similarity with
umerous bacterial, yeast, insect and other mammalian ABC

ransport proteins (Higgins, 1992). MDR1 gene encodesP-gp
n humans (Ambudkar et al., 1999; Germann, 1996). High levels
f P-gp expression have been observed in the endothelial cells
f the blood–brain barrier, certain cells of the adrenal gland,

iver, pancreas, kidney, colon, jejunum, digestive tract and cells
f the lumen surface of the gravid uterus secretory epithelium
nd in many cancer cells as well.P-gp can extrude a range
f structurally diverse, toxic xenobiotic compounds from cells
Schinkel, 1997), therefore the broad distribution ofP-gp not
nly causes a major problem in the failure of cancer chemother-
py, but also involves ADME properties of drugs, especially

n the intestine absorption and tissue distribution in the body.
ecause of this strategical location, modulation ofP-gp activity
nd/or expression at these cellular sites may affect the pharma-
okinetic parameters of drugs that areP-gp substrates, leading

to modified bioavailability and possible adverse drug reac
(Romiti et al., 2004). Knowledge of the factors that determ
substrate specificity is crucial for successful drug targeting
rational design of new drugs. It is accepted, however, that int
tion of compounds withP-gp is a complex process and curren
the details of its mechanism of action are still the subjects of
troversy (Stouch and Gudmundsson, 2002). Evaluation of suc
factors is critically important to understand the whole schem
interaction betweenP-gp and drugs. Many attempts have b
made to find early assessment ofP-gp substrates or inhibitor
The proved several screening assays could help identify the
ject of substrates and inhibitors. For example, the cytotox
IC50 endpoint is one of the evaluated methods. The activi
the reversal agent is generally expressed as a fold reversio
also is usually called the MDR ratio (Dhainaut et al., 1996).
Another popular approach is based on the increased accu
tion of photo-affinity analogs of anti-tumor agents (Beck and
Qian, 1992) or fluorescent compounds (Kessel et al., 1991),
which interact with otherP-gp modulators inside the cell. Tran
port studies using Caco-2 cell line that expressesP-gp have als
been used to screenP-gp substrates and inhibitors (Burton et al.
1993). Besides these experimental techniques, computa
∗ Corresponding author at: Taiping Road 27, Haidian District, Beijing, China.
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approaches have also been developed to predictP-gp interact-
ing drugs because the experimental determination is laborious,
expensive, and time-consuming, and requires a sufficient quan-
tity of pure compound. Therefore, there is a considerable demand
378-5173/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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for fast and reliable computational methods to assessP-gp inter-
actions at an early stage of drug discovery. Unfortunately, so far
a truly general conclusive QSAR model has not been found for
either substrate or inhibitory activities.Österberg and Norinder
had reported a theoretical calculation to predictP-gp interaction
using MolSurf parametrization and PLS statistics (Österberg and
Norinder, 2000). The investigated results explained that Mol-
Surf descriptors could predictP-gp associated ATPase activity of
drugs on certain extends. However, this method is more complex
and the computational requirements are prohibitive for medium-
sized data sets.

Recently, a novel method named VolSurf has been devel-
oped by Cruciani’s group (Cruciani et al., 2000a). VolSurf is an
automatic procedure to convert 3D molecular field into physic-
ochemical properties relevant to molecular descriptors and has
proven its efficacy and simplicity of usage. The basic concept
of VolSurf is to compress the information presented in 3D grid
maps into a few quantitative numerical descriptors which are
easy to understand and interpret. The principal advantage of
these descriptors is that they do not require structural superimpo-
sition for a 3D-QSAR analysis, as is usually required when work-
ing with grid-field variables (Kubinyi, 1997), and their numerical
values are related to conformations submitted to computation. To
our best knowledge, no attempt has been made to use descriptors
derived from VolSurf to buildP-gp associated ATPase activities
predictive model. In the present paper, we reported the use of
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2.2. Dataset

Log 1/k1 data for 27 compounds were compiled from the liter-
ature (Litman et al., 1997). Drugs chosen were sets of calmodulin
antagonists, steroids, hydrophobic cations, chemotherapeutic
substrates ofP-gp and some other drugs with lower affinity
for P-gp. We followed the same approach asÖsterberg’s, tak-
ing log 1/k1 as the response variable (Österberg and Norinder,
2000), where 1/k1 is the reciprocal of Michaelis constant,km,
which is directly proportional to affinity, and log 1/k1, is directly
proportional to the free energy of interaction between ligand and
receptor. (The chemical structures have been omitted.)

2.3. Calculation of VolSurf descriptor variables

The molecular descriptors were derived from the Vol-
Surf/GRID program. The interaction fields with a water probe
(OH), a hydrophobic probe (DRY) and a carbonyl probe (O)
were calculated all around the target molecules. O represents a
hydrogen bond acceptor probe that offers complementary infor-
mation in comparison with the water probe, which informs on
all the possible hydrogen bond centers without regard to their
donor or acceptor characteristics. As a result, VolSurf generated
the 72 descriptors were omitted because a detailed explanation
of the VolSurf methodology is given everywhere (Cruciani et
al., 2000b). Then we used exclude individual variables com-
m at 55
d
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olSurf and PLS statistics for modeling the structure–act
elationship between the ATPase activities and structu
iverseP-gp substrates by using not only the 22 drugs in
uced inÖsterberg’s paper but also additional five drugs.

. Computational procedures

.1. Overview of building predictive model approach

The overall procedures contained the following five m
teps:

1) Collection compounds withP-gp associated ATPase act
ities from literature.

2) The three-dimensional structure of the compounds was
structed using the Concord program, and the resulting
formations were refined by energy minimization with Trip
force field as implemented in sybyl 6.91 (SYBYL Version
6.91).

3) The compounds were submitted to multivariate chara
ization based on their interaction energy with chem
probes. Then we used the GRID program (Goodford, 1985
Bobbyer et al., 1989) to calculate the 3D molecular intera
tion field.

4) Molecular descriptors were calculated using the Vol
program.

5) Chemo metric tool PLS was used to correlate the data
build aP-gp interaction model.

It should be noted that the VolSurf program could perf
teps 3–5 automatically.
-
-

-

d

and to select the active descriptors. The result showed th
escriptors were active in the model.

.4. Statistical analysis

The relationship between the experimental reported logk1
alues and the computed VolSurf descriptors was determ
sing partial least squares (PLS), which allows quantitative

ionship to be established among multiple variables (Wold et al.,
993). The number of significant latent variables and the qu
f the models were determined by using the leave-one-out c
alidation procedure (LOO-CV). In such a procedure, e
ompound is removed once from the dataset, and the re
ng compounds are used to develop a new model, with w
he compounds left are then predicted.

.5. Training set selection

We used the same method as the maximin approach
elected the same 14 molecules reported byÖsterberg a
he training set (̈Osterberg and Norinder, 2000, Marengo and
odeschini, 1992).

. Results and discussion

.1. P-gp associated ATPase activity data selection

ATPase activity is pre-requisite forP-gp to transport sub
trate and both nucleotide binding domains (NBD’s) ofP-gp
ust hydrolyze nucleotides for the transport to occur (Stouch
nd Gudmundsson, 2002). The stimulation/inhibition ofP-gp
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ATPase activity in membranes obtained from cells that express
P-gp could be detected. Assays are on the hypothesis that drug-
induced ATP hydrolysis reflects transport by the transporter. It
has been proposed that substrates could be characterized based
on their kinetic parameters (Litman et al., 1997; Scarborough,
1995). Therefore, determination ofP-gp ATPase activity modu-
lations by various drugs is a means of obtaining qualitative and
quantitative data describing the interaction between these drugs
andP-gp (Garrigues et al., 2002).

3.2. The model 1 with the 26 molecules as the training set

Tamoxifen was excluded from the statistical analysis by
using exclude objects command. Exclude manual was utilized
to remove outliers, split the dataset in a training and a predic-
tion set. Although it was difficult to explain why the calculated
pK1 value of tamoxifen was so smaller than the experimental
value, tamoxifen has a very large, spread-out and flexible conju-
gated�-system that may engage in fairly effective interactions
with P-gp, which was not correctly described by the currently
computed VolSurf descriptors. The relationship between the 3D
structure and theP-gp substrates of the dataset consisting of
26 compounds and 55 active descriptors was studied in the
preliminary investigation of model 1. Two significant princi-
pal components were found by LOO-CV technique. The two
components explained about 81% of the total variance of the
m
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Fig. 1. Relationship between experimental and calculated ATPase activity (PLS
model 1).

Fig. 2. Relationship between experimental and calculated ATPase activity (PLS
model 2).

results for the 13 molecules and 27 data set compounds with
experimental, calculated and predictedP-gp ATPase activity by
VolSurf procedure are shown inTable 2.

3.5. The interpretation of VolSurf models

The coefficient plot of model 1 shows the contribution of
the 55 active descriptors (Fig. 3). The vertical bars represent the

Fig. 3. PLS coefficient plot of the global model 1 for the correlation of 55 active
VolSurf descriptors withP-gp interacting drugs.
atrix.

.3. The model 2 with the 14 molecules as the training set

Based on the preliminary investigation, we carried out m
with 14 molecules from the 27 molecules and the s

5 descriptors. Two significant latent variables emerged
he PLS model and LOO-CV procedure. These compon
ccounted for about 90% of the total variance of the matrix

The results of the PLS statistical properties containing the
odels are summarized inTable 1. The results suggested th

he VolSurf model is similar to MolSurf model. And the pl
f experimental versus calculated ATPase-associated activ

he two models are shown inFigs. 1 and 2.

.4. External prediction of the model 2

In order to validate the predictability of the second mo
e selected the remaining 13 molecules as the test set

able 1
LS statistical properties of the two VolSurf and MolSurf models

odel Training set R2 Q2 SDEC SDEP

a 26 Compounds 0.8150 0.7630 0.2682 0.4
b 21 Compounds 0.7180 0.6950 0.4520 0.4
a 14 Compounds 0.9003 0.7165 0.3452 0.4
b 14 Compounds 0.7760 0.7420 0.3900 0.4

ote: SDEC, standard error of recalculation in fitting; SDEP, standard err
redicting in the prediction phase.
a Models were built by VolSurf.
b Models were built by MolSurf.



112 X.-M. Zhuang et al. / International Journal of Pharmaceutics 309 (2006) 109–114

Table 2
Experimental, calculated and predictedP-gp ATPase activity

No. Compound Experimentala activity Model 1, calculated activity Model 2

VolSurfc MolSurfb Calculated activity Predicted activity

VolSurfc MolSurfb VolSurfd MolSurfe

1 Reserpine 7.00 6.61 6.88 6.68 6.96
2 Epirubicin 6.69 6.54 6.60 6.46 6.74
3 Dipyridamole 6.39 6.78 6.16 6.71 6.18
4 Amiodarone 5.49 5.74 5.79 5.73 5.88
5 Terfenadine 5.65 5.57 5.81 5.63 5.81
6 d-Verapamil 5.79 5.88 5.62 5.97 5.69
7 Pimozide 6.00 5.9 5.57 5.99 5.53
8 Fluphenazine 4.94 5.48 5.30 5.38 5.27
9 Spironolactone 5.40 5.33 5.00 5.41 5.31

10 Quinidine 5.30 5.02 4.93 5.06 4.93
11 Mefloquine 5.42 4.99 4.95 4.95 4.88
12 S-Propranolol 3.77 4.10 4.79 4.09 4.81
13 Progesterone 4.75 4.78 4.73 4.77 4.80
14 Promethazine 4.63 4.35 4.38 4.42 4.41
15 Daunomycin 6.52 6.45 6.52 6.40 6.67
16 Diltiazem 4.13 5.04 5.39 5.24 5.48
17 S-Propafenone 5.37 4.73 5.18 4.76 5.25
18 Trifluoperazine 5.18 5.21 4.76 5.31 4.78
19 Trifluopromazine 4.80 4.77 4.56 4.83 4.58
20 Chlorpromazine 4.91 4.74 4.51 4.87 4.53
21 Amitriptyline 3.96 4.21 4.46 4.38 4.49
22 Tamoxifen 7.00 4.69 5.01 4.77 5.04
23 Fucidin 5.38 5.31 – 5.41 –
24 Vincristine 6.69 6.45 – 6.53 –
25 Vinblastine 5.89 5.97 – 5.76 –
26 Colchicine 3.08 3.33 – 3.21 –
27 Methotrexate 3.24 3.47 – 3.42 –

a Experimental pK1 values.
b Calculated/fitted pK1 values for the training set by MolSurf procedure.
c Calculated/fitted pK1 values for the training set by VolSurf procedure.
d Predicted pK1 values for the test set by VolSurf procedure.
e Predicted pK1 values for the test set by MolSurf procedure.

contribution of each single descriptor with a short bar displaying
a minor contribution and a long bar a major one. Therefore, we
could draw the following conclusions:

(1) The size, shape and volume descriptors have a significant
impact on promoting ATPase activity. This is consistent
with the observations by Litman and̈Osterberg, both of
whom had found an analogical relationship between ATPase
activity and the Van der Waals surface area (Litman et al.,
1997;Österberg and Norinder, 2000). This phenomenon has
been explained as an indication that the binding between
modulators andP-gp takes place across a wide interaction
surface on the protein, other than at a peculiar binding site.
It has been proved thatP-gp is a multisite protein (Orlowski
and Garrigos, 1999), where there were clearly at least two
binding sites. For example, verapamil and progesterone are
known to be bound to different sites, and these binding
sites were unequal. However, the performance at one site
is contingent on the other being unoccupied, and transport
is also sometimes mitigated when the other site is occupied
(Wang et al., 2000). This explanation was verified by theo-
retical calculation ofP-gp-interacting drugs using MolSurf

parametrization, which has been further testified by our Vol-
Surf model.

(2) Descriptors of POL (polarisability) and hydrogen bond
show another marked influence on promoting ATPase activ-
ity. Hydrogen bond describes the H-bonding capacity of a
molecule target, as obtained with a polar probe. The water
probe presents an optimal ability to donate and accept hydro-
gen bonds to and from the target. POL is an estimate of the
average molecule polarisability, calculated according to the
additive method of Miller, and the correlation between this
method and the polarisability calculated with VolSurf is very
good. This result is also consistent with the investigation of
Österberg et al., who found that factors related to hydrogen
bond, such as strengths and intermolecular hydrogen bond,
have a major impact on the ATPase activity. From these
information, a primary conclusion can be drawn that hydro-
gen bond capacity is a detrimental factor which may affect
the absorption of drugs because it is difficult for drugs with
many hydrogen bonds to cross bio-membranes passively,
and to make the situation even worse, the likelihood of them
being subjected to aP-gp-related efflux mechanism is also
enhanced.
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Fig. 4. VolSurf scaled descriptors of reserpine.

Fig. 5. VolSurf scaled descriptors of methotrexate.

(3) The coefficient plot also shows that not only such descriptors
of polarity as hydrophilic regions (W1–W7) and capacity
factors (CW1–CW5), but also the descriptors of hydropho-
bic interactions (D4–D8) are directly correlated toP-gp
ATPase activity. Although the later one’s positive contri-
bution appears somewhat smaller than the former one. Thi
is in line with Seelig’s conclusion that the importance of
lipophilicity and amphiphilicity might be due as much to
membrane partitioning as to protein binding (Seelig, 1998).

3.6. The application to two compounds in the dataset

At last, we discussed in detail about two compounds to
exemplify the interpretative value of the VolSurf model. These
compounds represent different properties ofP-gp interaction.
Reserpine has high ATPase activity while methotrexate ha
low ATPase activity. Interestingly, the scaled value of the
two compounds also showed the different trends, as show
in Figs. 4 and 5. Descriptors such as size, shape and volume
of reserpine are larger than those of methotrexate; polarisabi
ity (POL) and hydrogen bond descriptors of methotrexate are
smaller than those of reserpine. These results are in agreeme
with our earlier analysis of the PLS coefficient plot (Fig. 3).

4. Conclusion

n of
P nd
c ches
a Surf
d hav

significant impact on promotingP-gp ATPase activity, as well as
the hydrogen bond. At the same time, the descriptors describing
hydrophilic and hydrophobic properties also facilitate theP-gp
ATPase activity, which is in agreement with the accepted view
that manyP-gp substrates are amphiphilic molecules. It should
be noted, however, that the interaction of compounds withP-gp
is a complicated process, and so far there is not a very robust
assay to probe the interaction. Another drawback of the present
models is that it has been constructed/validated on small data
sets, which may lead to bias. Our next goal to be achieved is to
involve more compounds for improving the model.
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